熱門文章
在智慧停車系統(tǒng)中,車牌識(shí)別的算法處理步驟是怎樣的?
發(fā)布時(shí)間:2019-10-10 分類:交通百科
在智慧停車系統(tǒng)中,車牌識(shí)別是基于圖像分割和圖像識(shí)別理論,對(duì)車輛號(hào)牌的圖像進(jìn)行分析處理,從而確定牌照在圖像中的位置,并進(jìn)一步提取和識(shí)別出文本字符。車牌識(shí)別過程包括圖像采集、預(yù)處理、車牌定位、字符分割、字符識(shí)別、結(jié)果輸出等一系列算法運(yùn)算。
1.圖像采集
根據(jù)車輛檢測(cè)方式的不同,圖像采集一般分為兩種,一種是靜態(tài)模式下的圖像采集,通過車輛觸發(fā)地感線圈、紅外或雷達(dá)等裝置,給相機(jī)一個(gè)觸發(fā)信號(hào),相機(jī)在接收到觸發(fā)信號(hào)后會(huì)抓拍一張圖像,該方法的優(yōu)點(diǎn)是觸發(fā)率高,性能穩(wěn)定,缺點(diǎn)是需要切割地面鋪設(shè)線圈,施工量大;另一種是視頻模式下的圖像采集,外部不需要任何觸發(fā)信號(hào),相機(jī)會(huì)實(shí)時(shí)地記錄視頻流圖像,該方法的優(yōu)點(diǎn)是施工方便,不需要切割地面鋪設(shè)線圈,也不需要安裝車檢器等零部件,但其缺點(diǎn)也十分顯著,由于算法的極限,該方案的觸發(fā)率與識(shí)別率較之外設(shè)觸發(fā)都要低一些。
2.預(yù)處理
由于圖像質(zhì)量容易受光照、天氣、相機(jī)位置等因素的影響,所以在識(shí)別車牌之前需要先對(duì)相機(jī)和圖像做一些預(yù)處理,以保證得到車牌最清晰的圖像。一般會(huì)根據(jù)對(duì)現(xiàn)場(chǎng)環(huán)境和已經(jīng)拍攝到的圖像的分析得出結(jié)論,實(shí)現(xiàn)相機(jī)的自動(dòng)曝光處理、自動(dòng)白平衡處理、自動(dòng)逆光處理、自動(dòng)過爆處理等,并對(duì)圖像進(jìn)行噪聲過濾、對(duì)比度增強(qiáng)、圖像縮放等處理。去噪方法有均值濾波、中值濾波和高斯濾波等;增強(qiáng)對(duì)比度的方法有對(duì)比度線性拉伸、直方圖均衡和同態(tài)濾波器等;圖像縮放的主要方法有最近鄰插值法、雙線性插值法和立方卷積插值等。
3.車牌定位
從整個(gè)圖像中準(zhǔn)確地檢測(cè)出車牌區(qū)域,是車牌識(shí)別過程的一個(gè)重要步驟,如果定位失敗或定位不完整,會(huì)直接導(dǎo)致最終識(shí)別失敗。車牌定位方法一般會(huì)依據(jù)紋理特征、顏色特征和形狀特征等信息,采用投影分析、連通域分析、機(jī)器學(xué)習(xí)等算法檢測(cè)車牌。投影分析方法根據(jù)車牌字符與背景交替出現(xiàn)的次數(shù)相比于其他情況要多這個(gè)特征,通過圖像在水平和垂直方向的投影分析來定位車牌。連通域分析根據(jù)車牌中的每個(gè)字符都是一個(gè)連通域且這些連通域的結(jié)構(gòu)和顏色都一致的特征,通過檢測(cè)并合并這些連通域來定位車牌;機(jī)器學(xué)習(xí)的思路是,先使用從很多個(gè)車牌樣本中提取出來的特征把一個(gè)弱分類器訓(xùn)練成一個(gè)強(qiáng)分類器,再使用這個(gè)強(qiáng)分類器對(duì)圖像進(jìn)行掃描檢測(cè)從而定位到車牌。由于復(fù)雜的圖像背景,且要考慮不清晰車牌的定位,所以很容易把柵欄,廣告牌等噪聲當(dāng)成車牌,所以如何排除這些偽車牌也是車牌定位的一個(gè)難點(diǎn)。為了提高定位的準(zhǔn)確率和提高識(shí)別速度,一般的車牌識(shí)別系統(tǒng)都會(huì)設(shè)計(jì)一個(gè)外部接口,讓用戶自己根據(jù)現(xiàn)場(chǎng)環(huán)境設(shè)置不同的識(shí)別區(qū)域。
4.車牌校正
由于受拍攝角度、鏡頭等因素的影響,圖像中的車牌存在水平傾斜、垂直傾斜或梯形畸變等變形,這給后續(xù)的識(shí)別處理帶來了困難。如果在定位到車牌后先進(jìn)行車牌校正處理,這樣做有利于去除車牌邊框等噪聲,更有利于字符識(shí)別。目前常用校正方法有:Hough變換法,通過檢測(cè)車牌上下、左右邊框直線來計(jì)算傾斜角度;旋轉(zhuǎn)投影法,通過按不同角度將圖像在水平軸上進(jìn)行垂直投影,其投影值為0的點(diǎn)數(shù)之和最大時(shí)的角度即為垂直傾斜角度,水平角度的計(jì)算方法與其相似;主成分分析法,根據(jù)車牌背景與字符交界處的顏色具有固定搭配這一特征、求出顏色對(duì)特征點(diǎn)的主成分方向即為車牌的水平傾斜角度;方差最小法,根據(jù)字符在垂直方向投影點(diǎn)的坐標(biāo)方差最小導(dǎo)出垂直傾斜角的閉合表達(dá)式,從而確定垂直傾斜角度;透視變換,利用檢測(cè)到的車牌的四個(gè)頂點(diǎn)經(jīng)過相關(guān)矩陣變換后實(shí)現(xiàn)車牌的畸變校正。
5.字符分割
定位出車牌區(qū)域后,由于并不知道車牌中總共有幾個(gè)字符、字符間的位置關(guān)系、每個(gè)字符的寬高等信息,所以,為了保證車牌類型匹配和字符識(shí)別正確,字符分割是必不可少的一步。字符分割的主要思路是,基于車牌的二值化結(jié)果或邊緣提取結(jié)果,利用字符的結(jié)構(gòu)特征、字符間的相似性、字符間間隔等信息,一方面把單個(gè)字符分別提取出來,也包括粘連和斷裂字符等特殊情況的處理;另一方面把寬、高相似的字符歸為一類從而去除車牌邊框以及一些小的噪聲。一般采用的算法有:連通域分析、投影分析,字符聚類和模板匹配等。污損車牌和光照不均造成的模糊車牌仍是字符分割算法所面對(duì)的挑戰(zhàn),有待更好的算法出現(xiàn)并解決以上問題。
6.字符識(shí)別
對(duì)分割后的字符的灰度圖像進(jìn)行歸一化處理,特征提取,然后經(jīng)過機(jī)器學(xué)習(xí)或與字符數(shù)據(jù)庫(kù)模板進(jìn)行匹配,最后選取匹配度最高的結(jié)果作為識(shí)別結(jié)果。目前比較流行的字符識(shí)別算法有:模板匹配法、人工神經(jīng)網(wǎng)絡(luò)法、支持向量機(jī)法和Adaboost分類法等。模板匹配法的優(yōu)點(diǎn)是識(shí)別速度快、方法簡(jiǎn)單,缺點(diǎn)是對(duì)斷裂、污損等情況的處理有一些困難;人工神經(jīng)網(wǎng)絡(luò)法學(xué)習(xí)能力強(qiáng)、適應(yīng)性強(qiáng)、分類能力強(qiáng)但比較耗時(shí);支持向量機(jī)法對(duì)于未見過的測(cè)試樣本具有更好的識(shí)別能力且需要較少的訓(xùn)練樣本;Adaboost分類法能側(cè)重于比較重要的訓(xùn)練數(shù)據(jù),識(shí)別速度快、實(shí)時(shí)性較高。我國(guó)車牌由漢字、英文字母和阿拉伯?dāng)?shù)字3種字符組成,且具有統(tǒng)一的樣式,這也是識(shí)別過程的方便之處。但由于車牌很容易受外在環(huán)境的影響,出現(xiàn)模糊、斷裂、污損字符的情況,如何提高這類字符和易混淆字符的識(shí)別率,也是字符識(shí)別的難點(diǎn)之一。易混淆字符包括:0與D、0與Q、2與Z、8與B、5與S、6與G、4與A等。
7.車牌結(jié)果輸出
將車牌識(shí)別結(jié)果以文本格式輸出,包括車牌號(hào),車牌顏色,車牌類型等。
迪蒙人工智能共享停車解決方案包括智慧路內(nèi)停車、智慧停車場(chǎng)、立體停車庫(kù)、共享停車、新能源充電樁等子系統(tǒng)。作為一款真正實(shí)現(xiàn)“無感出入、無感支付、無人值守”的城市級(jí)智慧停車解決方案,該方案以“高位視頻+掌停車APP+AI停車管理云平臺(tái)”為框架,一套高位視頻設(shè)備可管理8-12個(gè)車位,車牌識(shí)別率高達(dá)99.99%,可自動(dòng)儲(chǔ)存用戶路內(nèi)停車視頻和圖像記錄,為處理違章停車,追繳逃費(fèi)、漏費(fèi)提供了完整的證據(jù)鏈,解決了傳統(tǒng)停車管理效率低、依賴人工、操作繁瑣、用戶體驗(yàn)感差等問題。此外,迪蒙人工智能共享停車以路內(nèi)停車為支點(diǎn),可將路內(nèi)路外停車資源徹底打通,全面鏈接城市公交出行系統(tǒng)、交通指揮系統(tǒng)、公安監(jiān)控系統(tǒng)、交警執(zhí)法系統(tǒng),實(shí)現(xiàn)城市一個(gè)平臺(tái)、一張網(wǎng)、一體化、智慧化停車管理和平臺(tái)共享、車位共享、數(shù)據(jù)共享,徹底顛覆傳統(tǒng)停車管理模式。