熱門(mén)文章
- 1中國(guó)城市停車(chē)終迎來(lái)高光井噴時(shí)代
- 2迪蒙停車(chē):四部委聯(lián)手推動(dòng)城市智
- 3向雋:共享停車(chē)將遍布全世界每個(gè)
- 4國(guó)務(wù)院、發(fā)改委多舉措推進(jìn)城市智
- 5掌停車(chē):全國(guó)“兩會(huì)”聚焦停車(chē)難
- 6人工智能停車(chē)已成為橫琴新區(qū)一張
- 7掌停車(chē):智慧停車(chē)是移動(dòng)互聯(lián)網(wǎng)時(shí)
- 8迪蒙城市停車(chē):智慧停車(chē)萬(wàn)億金礦
- 9迪蒙城市停車(chē):深圳“科技治城”
- 10迪蒙城市停車(chē):深圳力推共享停車(chē)
相關(guān)文章
- 1深圳入選中國(guó)首批13個(gè)交通強(qiáng)國(guó)
- 2智慧城市如何改變生活?
- 3堅(jiān)持法治引領(lǐng)交通強(qiáng)國(guó)建設(shè)
- 4四大領(lǐng)域22項(xiàng)任務(wù)試點(diǎn)交通強(qiáng)國(guó)
- 5日本東京大學(xué)攜手軟銀打造人工智
- 6工信部副部長(zhǎng):開(kāi)展5G區(qū)塊鏈等
- 7工信部趙志國(guó):今年中國(guó)網(wǎng)絡(luò)安全
- 8交通部開(kāi)展第二批交通強(qiáng)國(guó)建設(shè)試
- 9治理“城市病”,如何對(duì)癥下藥?
- 10城市精細(xì)化治理不能忽視的關(guān)鍵點(diǎn)
人工智能大腦如何調(diào)控智能交通“疏堵”?
發(fā)布時(shí)間:2017-07-25 分類(lèi):趨勢(shì)研究
隨著科技水平和工程建設(shè)能力的空前提高,交通對(duì)一個(gè)城市的影響從未像今天這樣占據(jù)如此突出的地位,隱隱有成為城市發(fā)展第一牽引力的勢(shì)頭。在資金、智力、土地等其他條件都較為接近的情況下,中國(guó)三大城市群之間的對(duì)比更能顯而易見(jiàn)。
隨著交通卡口的大規(guī)模聯(lián)網(wǎng),匯集了海量車(chē)輛通行記錄信息,利用人工智能技術(shù),可實(shí)時(shí)分析城市交通流量,調(diào)整紅綠燈間隔,縮短車(chē)輛等待時(shí)間等舉措,提升城市道路的通行效率。
城市級(jí)的人工智能大腦,實(shí)時(shí)掌握著城市道路上通行車(chē)輛的軌跡信息,停車(chē)場(chǎng)的車(chē)輛信息以及小區(qū)的停車(chē)信息,能提前半個(gè)小時(shí)預(yù)測(cè)交通流量變化和停車(chē)位數(shù)量變化,合理調(diào)配資源、疏導(dǎo)交通,實(shí)現(xiàn)機(jī)場(chǎng)、火車(chē)站、汽車(chē)站、商圈的大規(guī)模交通聯(lián)動(dòng)調(diào)度,提升整個(gè)城市的運(yùn)行效率,為居民的出行暢通提供保障。
車(chē)牌識(shí)別是人工智能應(yīng)用最理想的領(lǐng)域
目前在智能交通領(lǐng)域,人工智能分析及深度學(xué)習(xí)比較成熟的應(yīng)用技術(shù)以車(chē)牌識(shí)別算法最為理想,雖然目前很多廠商都宣稱自己的車(chē)牌識(shí)別率已經(jīng)達(dá)到了99%,但這也只是在標(biāo)準(zhǔn)卡口的視頻條件下再加上一些預(yù)設(shè)條件來(lái)達(dá)到的。在針對(duì)很多簡(jiǎn)易卡口和卡口圖片進(jìn)行車(chē)牌定位識(shí)別時(shí),較好的車(chē)牌識(shí)別也很難達(dá)到90%。不過(guò)隨著采用人工智能、深度學(xué)習(xí)的應(yīng)用,這一情況將會(huì)得到很大的改善。
在傳統(tǒng)的圖像處理和機(jī)器學(xué)習(xí)算法研發(fā)中,很多特征都是人為制定的,比如hog、sift特征,在目標(biāo)檢測(cè)和特征匹配中占有重要的地位,安防領(lǐng)域中的很多具體算法所使用的特征大多是這兩種特征的變種。
人為設(shè)計(jì)特征和機(jī)器學(xué)習(xí)算法,從以往的經(jīng)驗(yàn)來(lái)看,由于理論分析的難度大,訓(xùn)練方法又需要很多經(jīng)驗(yàn)和技巧,一般需要5到10年的時(shí)間才會(huì)有一次突破性的發(fā)展,而且對(duì)算法工程師的知識(shí)要求也一直在提高。深度學(xué)習(xí)則不然,在進(jìn)行圖像檢測(cè)和識(shí)別時(shí),無(wú)需人為設(shè)定具體的特征,只需要準(zhǔn)備好足夠多的圖進(jìn)行訓(xùn)練即可,通過(guò)逐層的迭代就可以獲得較好的結(jié)果。從目前的應(yīng)用情況來(lái)看,只要加入新數(shù)據(jù),并且有充足的時(shí)間和計(jì)算資源,隨著深度學(xué)習(xí)網(wǎng)絡(luò)層次的增加,識(shí)別率就會(huì)相應(yīng)提升,比傳統(tǒng)方法表現(xiàn)更好。
另外在車(chē)輛顏色、車(chē)輛廠商標(biāo)志識(shí)別、無(wú)牌車(chē)檢測(cè)、非機(jī)動(dòng)車(chē)檢測(cè)與分類(lèi)、車(chē)頭車(chē)尾判斷、車(chē)輛檢索、人臉識(shí)別等相關(guān)的技術(shù)方面也比較成熟。
車(chē)牌顏色識(shí)別
在車(chē)輛顏色識(shí)別方面,基本上克服了由于光照條件變化、相機(jī)硬件誤差所帶來(lái)的顏色不穩(wěn)定、過(guò)曝光等一系列問(wèn)題,因此解決了圖像顏色變化導(dǎo)致的識(shí)別錯(cuò)誤問(wèn)題,卡口車(chē)輛顏色識(shí)別率從80%提升到85%,電警車(chē)輛主顏色識(shí)別率到從75%提升到80%以上。
車(chē)輛廠商標(biāo)志識(shí)別
在車(chē)輛廠商標(biāo)志識(shí)別方面,使用傳統(tǒng)的HOG、LBP、SIFT、SURF等特征,采用SVM機(jī)器學(xué)習(xí)技術(shù)訓(xùn)練一個(gè)多級(jí)聯(lián)的分類(lèi)器來(lái)識(shí)別廠商標(biāo)志很容易出現(xiàn)誤判,采用大數(shù)據(jù)加深度學(xué)習(xí)技術(shù)后,車(chē)輛車(chē)標(biāo)的過(guò)曝光或者車(chē)標(biāo)被人為去掉等引起的局部特征會(huì)隨之消失,其識(shí)別率可以從89%提升到93%以上。
車(chē)輛檢索
在車(chē)輛檢索方面,車(chē)輛的圖片在不同場(chǎng)景下會(huì)出現(xiàn)曝光過(guò)度或者曝光不足,或者車(chē)輛的尺度發(fā)生很大變化,導(dǎo)致傳統(tǒng)方法提取的特征會(huì)發(fā)生變化,因此檢索率很不穩(wěn)定。深度學(xué)習(xí)能夠很好地獲取較為較穩(wěn)定的特征,搜索的相似目標(biāo)更精確,Top5的搜索率在95%以上。在人臉識(shí)別項(xiàng)目中,由于光線、姿態(tài)和表情等因素引起人臉變化,目前很多應(yīng)用都是固定場(chǎng)景、固定姿態(tài),采用深度學(xué)習(xí)算法后,不僅固定場(chǎng)景的人臉識(shí)別率從89%提升到99%,而且對(duì)姿態(tài)和光線也有了一定的放松。
交通信號(hào)系統(tǒng)
傳統(tǒng)的交通燈使用默認(rèn)時(shí)間轉(zhuǎn)換燈色,雖然轉(zhuǎn)換燈色的時(shí)間會(huì)根據(jù)數(shù)據(jù)每幾年更新一次,但是隨著交通模式發(fā)展,傳統(tǒng)系統(tǒng)很快就會(huì)過(guò)時(shí)。而人工智能驅(qū)動(dòng)的智能交通信號(hào)系統(tǒng)則以雷達(dá)傳感器和攝像頭監(jiān)控交通狀況,然后利用先進(jìn)的人工智能算法決定燈色轉(zhuǎn)換時(shí)間,通過(guò)人工智能和交通控制理論融合應(yīng)用,優(yōu)化了城市道路網(wǎng)絡(luò)中的交通流量。
大數(shù)據(jù)分析
人工智能算法可以根據(jù)城市民眾的出行偏好、生活、消費(fèi)習(xí)慣等方式,分析出城市人流、車(chē)流的遷移與城市建設(shè)及公眾資源的數(shù)據(jù)?;谶@些大數(shù)據(jù)的分析結(jié)果,為政府決策部門(mén)進(jìn)行城市規(guī)劃,特別是為公共交通設(shè)施的基礎(chǔ)建設(shè)提供指導(dǎo)和借鑒。
無(wú)人駕駛和汽車(chē)輔助駕駛
非常重要的一個(gè)技術(shù)點(diǎn)就是圖象識(shí)別,通過(guò)圖像識(shí)別前方車(chē)輛、行人、障礙物、道路以及交通信號(hào)燈和交通標(biāo)識(shí),這項(xiàng)技術(shù)的落地應(yīng)用將給人類(lèi)帶來(lái)前所未有的出行體驗(yàn),重塑交通體系,并構(gòu)建真正的智能交通時(shí)代。
公路交通安全防控體系涉及的核心技術(shù)是交通行為監(jiān)測(cè)、交通安全研判、交通風(fēng)險(xiǎn)預(yù)警、交通違法執(zhí)法,而這些技術(shù)現(xiàn)已與人工智能融為一體。實(shí)現(xiàn)公路交通運(yùn)行狀態(tài)“看得見(jiàn)”、車(chē)輛通行軌跡“摸得透”、重點(diǎn)違法行為“抓得住”、安全隱患事件“消得了”、路面協(xié)作聯(lián)動(dòng)“響應(yīng)快”、交通信息應(yīng)用“服務(wù)優(yōu)”等目標(biāo),都離不開(kāi)人工智能技術(shù)。
隨著交通卡口的大規(guī)模聯(lián)網(wǎng),匯集了海量車(chē)輛通行記錄信息,利用人工智能技術(shù),可實(shí)時(shí)分析城市交通流量,調(diào)整紅綠燈間隔,縮短車(chē)輛等待時(shí)間等舉措,提升城市道路的通行效率。
城市級(jí)的人工智能大腦,實(shí)時(shí)掌握著城市道路上通行車(chē)輛的軌跡信息,停車(chē)場(chǎng)的車(chē)輛信息以及小區(qū)的停車(chē)信息,能提前半個(gè)小時(shí)預(yù)測(cè)交通流量變化和停車(chē)位數(shù)量變化,合理調(diào)配資源、疏導(dǎo)交通,實(shí)現(xiàn)機(jī)場(chǎng)、火車(chē)站、汽車(chē)站、商圈的大規(guī)模交通聯(lián)動(dòng)調(diào)度,提升整個(gè)城市的運(yùn)行效率,為居民的出行暢通提供保障。
車(chē)牌識(shí)別是人工智能應(yīng)用最理想的領(lǐng)域
目前在智能交通領(lǐng)域,人工智能分析及深度學(xué)習(xí)比較成熟的應(yīng)用技術(shù)以車(chē)牌識(shí)別算法最為理想,雖然目前很多廠商都宣稱自己的車(chē)牌識(shí)別率已經(jīng)達(dá)到了99%,但這也只是在標(biāo)準(zhǔn)卡口的視頻條件下再加上一些預(yù)設(shè)條件來(lái)達(dá)到的。在針對(duì)很多簡(jiǎn)易卡口和卡口圖片進(jìn)行車(chē)牌定位識(shí)別時(shí),較好的車(chē)牌識(shí)別也很難達(dá)到90%。不過(guò)隨著采用人工智能、深度學(xué)習(xí)的應(yīng)用,這一情況將會(huì)得到很大的改善。
在傳統(tǒng)的圖像處理和機(jī)器學(xué)習(xí)算法研發(fā)中,很多特征都是人為制定的,比如hog、sift特征,在目標(biāo)檢測(cè)和特征匹配中占有重要的地位,安防領(lǐng)域中的很多具體算法所使用的特征大多是這兩種特征的變種。
人為設(shè)計(jì)特征和機(jī)器學(xué)習(xí)算法,從以往的經(jīng)驗(yàn)來(lái)看,由于理論分析的難度大,訓(xùn)練方法又需要很多經(jīng)驗(yàn)和技巧,一般需要5到10年的時(shí)間才會(huì)有一次突破性的發(fā)展,而且對(duì)算法工程師的知識(shí)要求也一直在提高。深度學(xué)習(xí)則不然,在進(jìn)行圖像檢測(cè)和識(shí)別時(shí),無(wú)需人為設(shè)定具體的特征,只需要準(zhǔn)備好足夠多的圖進(jìn)行訓(xùn)練即可,通過(guò)逐層的迭代就可以獲得較好的結(jié)果。從目前的應(yīng)用情況來(lái)看,只要加入新數(shù)據(jù),并且有充足的時(shí)間和計(jì)算資源,隨著深度學(xué)習(xí)網(wǎng)絡(luò)層次的增加,識(shí)別率就會(huì)相應(yīng)提升,比傳統(tǒng)方法表現(xiàn)更好。
另外在車(chē)輛顏色、車(chē)輛廠商標(biāo)志識(shí)別、無(wú)牌車(chē)檢測(cè)、非機(jī)動(dòng)車(chē)檢測(cè)與分類(lèi)、車(chē)頭車(chē)尾判斷、車(chē)輛檢索、人臉識(shí)別等相關(guān)的技術(shù)方面也比較成熟。
車(chē)牌顏色識(shí)別
在車(chē)輛顏色識(shí)別方面,基本上克服了由于光照條件變化、相機(jī)硬件誤差所帶來(lái)的顏色不穩(wěn)定、過(guò)曝光等一系列問(wèn)題,因此解決了圖像顏色變化導(dǎo)致的識(shí)別錯(cuò)誤問(wèn)題,卡口車(chē)輛顏色識(shí)別率從80%提升到85%,電警車(chē)輛主顏色識(shí)別率到從75%提升到80%以上。
車(chē)輛廠商標(biāo)志識(shí)別
在車(chē)輛廠商標(biāo)志識(shí)別方面,使用傳統(tǒng)的HOG、LBP、SIFT、SURF等特征,采用SVM機(jī)器學(xué)習(xí)技術(shù)訓(xùn)練一個(gè)多級(jí)聯(lián)的分類(lèi)器來(lái)識(shí)別廠商標(biāo)志很容易出現(xiàn)誤判,采用大數(shù)據(jù)加深度學(xué)習(xí)技術(shù)后,車(chē)輛車(chē)標(biāo)的過(guò)曝光或者車(chē)標(biāo)被人為去掉等引起的局部特征會(huì)隨之消失,其識(shí)別率可以從89%提升到93%以上。
車(chē)輛檢索
在車(chē)輛檢索方面,車(chē)輛的圖片在不同場(chǎng)景下會(huì)出現(xiàn)曝光過(guò)度或者曝光不足,或者車(chē)輛的尺度發(fā)生很大變化,導(dǎo)致傳統(tǒng)方法提取的特征會(huì)發(fā)生變化,因此檢索率很不穩(wěn)定。深度學(xué)習(xí)能夠很好地獲取較為較穩(wěn)定的特征,搜索的相似目標(biāo)更精確,Top5的搜索率在95%以上。在人臉識(shí)別項(xiàng)目中,由于光線、姿態(tài)和表情等因素引起人臉變化,目前很多應(yīng)用都是固定場(chǎng)景、固定姿態(tài),采用深度學(xué)習(xí)算法后,不僅固定場(chǎng)景的人臉識(shí)別率從89%提升到99%,而且對(duì)姿態(tài)和光線也有了一定的放松。
交通信號(hào)系統(tǒng)
傳統(tǒng)的交通燈使用默認(rèn)時(shí)間轉(zhuǎn)換燈色,雖然轉(zhuǎn)換燈色的時(shí)間會(huì)根據(jù)數(shù)據(jù)每幾年更新一次,但是隨著交通模式發(fā)展,傳統(tǒng)系統(tǒng)很快就會(huì)過(guò)時(shí)。而人工智能驅(qū)動(dòng)的智能交通信號(hào)系統(tǒng)則以雷達(dá)傳感器和攝像頭監(jiān)控交通狀況,然后利用先進(jìn)的人工智能算法決定燈色轉(zhuǎn)換時(shí)間,通過(guò)人工智能和交通控制理論融合應(yīng)用,優(yōu)化了城市道路網(wǎng)絡(luò)中的交通流量。
大數(shù)據(jù)分析
人工智能算法可以根據(jù)城市民眾的出行偏好、生活、消費(fèi)習(xí)慣等方式,分析出城市人流、車(chē)流的遷移與城市建設(shè)及公眾資源的數(shù)據(jù)?;谶@些大數(shù)據(jù)的分析結(jié)果,為政府決策部門(mén)進(jìn)行城市規(guī)劃,特別是為公共交通設(shè)施的基礎(chǔ)建設(shè)提供指導(dǎo)和借鑒。
無(wú)人駕駛和汽車(chē)輔助駕駛
非常重要的一個(gè)技術(shù)點(diǎn)就是圖象識(shí)別,通過(guò)圖像識(shí)別前方車(chē)輛、行人、障礙物、道路以及交通信號(hào)燈和交通標(biāo)識(shí),這項(xiàng)技術(shù)的落地應(yīng)用將給人類(lèi)帶來(lái)前所未有的出行體驗(yàn),重塑交通體系,并構(gòu)建真正的智能交通時(shí)代。
公路交通安全防控體系涉及的核心技術(shù)是交通行為監(jiān)測(cè)、交通安全研判、交通風(fēng)險(xiǎn)預(yù)警、交通違法執(zhí)法,而這些技術(shù)現(xiàn)已與人工智能融為一體。實(shí)現(xiàn)公路交通運(yùn)行狀態(tài)“看得見(jiàn)”、車(chē)輛通行軌跡“摸得透”、重點(diǎn)違法行為“抓得住”、安全隱患事件“消得了”、路面協(xié)作聯(lián)動(dòng)“響應(yīng)快”、交通信息應(yīng)用“服務(wù)優(yōu)”等目標(biāo),都離不開(kāi)人工智能技術(shù)。
熱門(mén)資訊
- 智慧停車(chē)催生“停車(chē)地產(chǎn)”新機(jī)會(huì)
- 城市如何變得“智能”?這十大要素不可忽視
- 破解城市擁堵的根本出路在于智慧交通
- 鄭州機(jī)場(chǎng)的智能停車(chē)已躍居全國(guó)機(jī)場(chǎng)前五名
- 大數(shù)據(jù)在智慧交通中起什么作用?
- 住建部推進(jìn)停車(chē)設(shè)施規(guī)劃建設(shè) 立體停車(chē)空間廣闊!
- 迪蒙智慧交通將亮相中國(guó)“創(chuàng)互聯(lián)網(wǎng)金融無(wú)限未來(lái)”峰會(huì)
- 合法化一年,網(wǎng)約車(chē)有沒(méi)有“泯然眾車(chē)矣”