熱門文章
相關(guān)文章
- 1深圳入選中國(guó)首批13個(gè)交通強(qiáng)國(guó)
- 2智慧城市如何改變生活?
- 3堅(jiān)持法治引領(lǐng)交通強(qiáng)國(guó)建設(shè)
- 4四大領(lǐng)域22項(xiàng)任務(wù)試點(diǎn)交通強(qiáng)國(guó)
- 5日本東京大學(xué)攜手軟銀打造人工智
- 6工信部副部長(zhǎng):開展5G區(qū)塊鏈等
- 7工信部趙志國(guó):今年中國(guó)網(wǎng)絡(luò)安全
- 8交通部開展第二批交通強(qiáng)國(guó)建設(shè)試
- 9治理“城市病”,如何對(duì)癥下藥?
- 10城市精細(xì)化治理不能忽視的關(guān)鍵點(diǎn)
李開復(fù)AI五講|人工智能的五個(gè)定義:哪個(gè)最不可???
發(fā)布時(shí)間:2019-08-27 分類:趨勢(shì)研究
編者按:從驚呼“人工智能來了”到察覺“人工智能無處不在”,人類社會(huì)才走過寥寥數(shù)年。在提出建設(shè)國(guó)家人工智能高地的上海,許多率先試水的應(yīng)用在各行各業(yè)寫下了“AI+”的故事。此時(shí)此刻,我們更加要冷靜地思考自身與人工智能的關(guān)系。我們真的知道什么是人工智能嗎?我們真的準(zhǔn)備好與人工智能共同發(fā)展了嗎?我們?cè)撊绾我?guī)劃人工智能時(shí)代的未來生活?
本月底,2019世界人工智能大會(huì)將在黃浦江畔揭開序幕。澎湃新聞特邀李開復(fù)、王詠剛將著作《人工智能》精編為系列短文,試析與AI相關(guān)的若干關(guān)鍵問題。
請(qǐng)拋開人工智能就是人形機(jī)器人的固有偏見,然后,打開你的手機(jī)。我們先來看一看,已經(jīng)變成每個(gè)人生活的一部分的智能手機(jī)里,到底藏著多少人工智能的神奇魔術(shù)。
谷歌最資深的計(jì)算機(jī)科學(xué)家與軟件架構(gòu)師、谷歌大腦開發(fā)團(tuán)隊(duì)的帶頭人杰夫?迪恩(Jeff Dean)說:“很多時(shí)候(人工智能)都是藏在底下,因此人們并不知道有很多東西已經(jīng)是機(jī)器學(xué)習(xí)的系統(tǒng)在驅(qū)動(dòng)?!?
到底什么是人工智能?為什么我們說智能搜索引擎、智能助理、機(jī)器翻譯、機(jī)器寫作、機(jī)器視覺、自動(dòng)駕駛、機(jī)器人等技術(shù)屬于人工智能,而諸如手機(jī)操作系統(tǒng)、瀏覽器、媒體播放器等通常不被歸入人工智能的范疇?人工智能究竟有沒有一個(gè)容易把握和界定的科學(xué)定義?
這里,簡(jiǎn)要列舉幾種歷史上有影響的,或目前仍流行的人工智能的定義。對(duì)這些定義的分析、討論是一件相當(dāng)有趣的事,這有些類似于古代哲學(xué)家們圍坐在一起探討“人何以為人”,或者,類似于科幻迷們對(duì)阿西莫夫的“機(jī)器人三定律”展開辯論。其實(shí),很多實(shí)用主義者反對(duì)形而上的討論,他們會(huì)大聲說:“啊,管它什么是人工智能呢?只要機(jī)器能幫助人解決問題不就行了?”
定義一:Al就是讓人覺得不可思議的計(jì)算機(jī)程序
人工智能就是機(jī)器可以完成人們不認(rèn)為機(jī)器能勝任的事——這個(gè)定義非常主觀,但也非常有趣。一個(gè)計(jì)算機(jī)程序是不是人工智能,完全由這個(gè)程序的所作所為是不是能讓人目瞪口呆來界定。
這種唯經(jīng)驗(yàn)論的定義顯然缺乏一致性,但這一定義往往反映的是一個(gè)時(shí)代里大多數(shù)的普通人對(duì)人工智能的認(rèn)知方式:每當(dāng)一個(gè)新的人工智能熱點(diǎn)出現(xiàn)時(shí),新聞媒體和大眾總是用自己的經(jīng)驗(yàn)來判定人工智能技術(shù)的價(jià)值高低,而不管這種技術(shù)在本質(zhì)上究竟有沒有“智能”。
計(jì)算機(jī)下棋的歷史就非常清楚地揭示了這一定義的反諷之處。
早期,礙于運(yùn)行速度和存儲(chǔ)空間的限制,計(jì)算機(jī)只能用來解決相對(duì)簡(jiǎn)單的棋類博弈問題,例如西洋跳棋,但這毫不妨礙當(dāng)時(shí)的人們將一臺(tái)會(huì)下棋的計(jì)算機(jī)稱作智能機(jī)器,因?yàn)槟菚r(shí),普通計(jì)算機(jī)在大多數(shù)人心目中不過是一臺(tái)能用飛快的速度做算術(shù)題的機(jī)器罷了。
1962年,IBM的阿瑟?塞繆爾的程序戰(zhàn)勝了一位盲人跳棋高手,一時(shí)間成了不小的新聞事件,絕大多數(shù)媒體和公眾都認(rèn)為類似的西洋跳棋程序是不折不扣的人工智能。
隨著PC的普及,每臺(tái)個(gè)人電腦都可以運(yùn)行一個(gè)水平相當(dāng)高的西洋跳棋程序,會(huì)下棋的計(jì)算機(jī)逐漸褪去了神秘的光環(huán)。
當(dāng)國(guó)際象棋、中國(guó)象棋逐漸被計(jì)算機(jī)玩得滾瓜爛熟,公眾找到了維護(hù)人類智慧尊嚴(yán)的最后陣地——圍棋。直到2016年年初,除了一個(gè)叫樊麾的職業(yè)圍棋選手和谷歌DeepMind的一支規(guī)模不大的研發(fā)團(tuán)隊(duì)外,幾乎所有地球人都說:“下象棋有什么了不起?真有智能的話,來跟世界冠軍下盤圍棋試試?”
很不幸,人類的自以為是又一次被快速發(fā)展的人工智能算法無情嘲笑了。2016年3月9日,隨著AlphaGo在五番棋中以四比一大勝圍棋世界冠軍李世石,有關(guān)人工智能的熱情和恐慌情緒同時(shí)在全世界蔓延開來,也因此引發(fā)了一撥人工智能的宣傳熱潮。
今天,沒有人懷疑AlphaGo的核心算法是人工智能。但想一想曾經(jīng)的西洋跳棋和國(guó)際象棋,當(dāng)時(shí)的人們不是一樣對(duì)戰(zhàn)勝了人類世界冠軍的程序敬若神明嗎?
定義二:Al就是與人類思考方式相似的計(jì)算機(jī)程序
這是人工智能發(fā)展早期非常流行的一種定義方式。從根本上講,這是一種類似仿生學(xué)的直觀思路。
但歷史經(jīng)驗(yàn)證明,仿生學(xué)的理路在科技發(fā)展中不一定可行。一個(gè)最好也最著名的例子就是飛機(jī)的發(fā)明。在幾千年的時(shí)間里,人類一直夢(mèng)想著按照鳥類撲打翅膀的方式飛上天空,但反諷的是,真正帶著人類在長(zhǎng)空朝翔,并打破了鳥類飛行速度、飛行高度紀(jì)錄的,是飛行原理與鳥類差別極大的固定翼飛機(jī)。
人類思考方式?人究竟是怎樣思考的?這本身就是一個(gè)復(fù)雜的技術(shù)和哲學(xué)問題。哲學(xué)家們?cè)噲D通過反省與思辨,找到人類思維的邏輯法則,而科學(xué)家們則通過心理學(xué)和生物學(xué)實(shí)驗(yàn),了解人類在思考時(shí)的身心變化規(guī)律。這兩條道路都在人工智能的發(fā)展歷史上起到過極為重要的作用。
世界上第一個(gè)專家系統(tǒng)程序Dendral是一個(gè)成功地用人類專家知識(shí)和邏輯推理規(guī)則解決一個(gè)特定領(lǐng)域問題的例子。這是一個(gè)由斯坦福大學(xué)的研究者用Lisp語言寫成的,幫助有機(jī)化學(xué)家根據(jù)物質(zhì)光譜推斷未知有機(jī)分子結(jié)構(gòu)的程序。
Dendral項(xiàng)目在20世紀(jì)60年代中期取得了令人矚目的成功,帶動(dòng)了專家系統(tǒng)在人工智能各相關(guān)領(lǐng)域的廣泛應(yīng)用,從機(jī)器翻譯到語音識(shí)別,從軍事決策到資源勘探。一時(shí)間,專家系統(tǒng)似乎就是人工智能的代名詞,其熱度不亞于今天的深度學(xué)習(xí)。
但人們很快就發(fā)現(xiàn)了局限。一個(gè)解決特定的、狹小領(lǐng)域問題的專家系統(tǒng)很難被擴(kuò)展到寬廣一些的知識(shí)領(lǐng)域中,更別提擴(kuò)展到基于世界知識(shí)的日常生活里了。
一個(gè)著名的例子是1957年蘇聯(lián)發(fā)射世界上第一顆人造衛(wèi)星后,美國(guó)政府和軍方急于使用機(jī)器翻譯系統(tǒng)了解蘇聯(lián)的科技動(dòng)態(tài)。但用語法規(guī)則和詞匯對(duì)照表實(shí)現(xiàn)的俄語到英語的機(jī)器翻譯系統(tǒng)笑話百出,曾把“心有余而力不足”(the spirit is wiling but the flesh is weak)翻譯為“伏特加不錯(cuò)而肉都爛掉了”(the vodka is good but the meat is roten)。
另一方面,從心理學(xué)和生物學(xué)出發(fā),科學(xué)家們?cè)噲D弄清楚人的大腦到底是怎么工作的,并希望按照大腦的工作原理構(gòu)建計(jì)算機(jī)程序,實(shí)現(xiàn)“真正”的人工智能。這條道路上同樣布滿荊棘。最跌宕起伏的例子,非神經(jīng)網(wǎng)絡(luò)莫屬。
20世紀(jì)90年代開始,隨著計(jì)算機(jī)運(yùn)算能力的飛速發(fā)展,神經(jīng)網(wǎng)絡(luò)在人工智能領(lǐng)域重新變成研究熱點(diǎn)。但直到2010年前后,支持深度神經(jīng)網(wǎng)絡(luò)的計(jì)算機(jī)集群才開始得到廣泛應(yīng)用,供深度學(xué)習(xí)系統(tǒng)訓(xùn)練使用的大規(guī)模數(shù)據(jù)集也越來越多。神經(jīng)網(wǎng)絡(luò)這一仿生學(xué)概念在人工智能的新一輪復(fù)興中,真正扮演了至關(guān)重要的核心角色。
定義三:AI就是與人類行為相似的計(jì)算機(jī)程序
和仿生學(xué)派強(qiáng)調(diào)對(duì)人腦的研究與模仿不同,實(shí)用主義者從不覺得人工智能的實(shí)現(xiàn)必須遵循什么規(guī)則或理論框架?!昂谪埌棕?,逮住耗子的就是好貓。”在人工智能的語境下,這句話可以被改成:“簡(jiǎn)單程序,復(fù)雜程序,聰明管用的就是好程序?!?
實(shí)用主義者推崇備至的一個(gè)例子是麻省理工學(xué)院于1964年到1966年開發(fā)的“智能”聊天程序ELIZA。這個(gè)程序看上去就像一個(gè)有無窮耐心的心理醫(yī)生,可以和無聊的人或需要談話治療的精神病人你一句我一句永不停歇地腳下去。當(dāng)年,ELIZA的聊天記錄讓許多人不敢相信自己的的眼睛。
可事實(shí)上,ELIZA所做的,不過是在用戶輸入的句子里,找到一些預(yù)先定義好的關(guān)鍵詞,然后根據(jù)關(guān)鍵詞從預(yù)定的回答中選擇一句,或者簡(jiǎn)單將用戶的輸入做了人稱替換后,再次輸出,就像心理醫(yī)生重復(fù)病人的話那樣。ELIZA心里只有詞表和映射規(guī)則,它才不懂用戶說的話是什么意思呢。
這種實(shí)用主義的思想在今天仍有很強(qiáng)的現(xiàn)實(shí)意義。比如今天的深度學(xué)習(xí)模型在處理機(jī)器翻譯、語音識(shí)別、主題抽取等自然語言相關(guān)的問題時(shí),基本上都是將輸入的文句看成由音素、音節(jié)、字或詞組成的信號(hào)序列,然后將這些信號(hào)一股腦塞進(jìn)深度神經(jīng)網(wǎng)絡(luò)里進(jìn)行訓(xùn)練。
深度神經(jīng)網(wǎng)絡(luò)內(nèi)部,每層神經(jīng)元的輸出信號(hào)可能相當(dāng)復(fù)雜,復(fù)雜到編程者并不一定清楚這些中間信號(hào)在自然語言中的真實(shí)含義,但沒有關(guān)系,只要整個(gè)模型的最終輸出滿足要求,這樣的深度學(xué)習(xí)算法就可以工作得很好。
定義四:AI就是會(huì)學(xué)習(xí)的計(jì)算機(jī)程序
沒有哪個(gè)完美主義者會(huì)喜歡這個(gè)定義。這一定義幾乎將人工智能與機(jī)器學(xué)習(xí)等同了起來。但這的確是最近這撥人工智能熱潮里,人工智能在許多人眼中的真實(shí)模樣。誰讓深度學(xué)習(xí)一枝獨(dú)秀,幾乎壟斷了人工智能領(lǐng)域里所有流行的技術(shù)方向呢?
這一定義似乎也符合人類認(rèn)知的特點(diǎn)一—沒有哪個(gè)人是不需要學(xué)習(xí),從小就懂得所有事情的。因此,今天最典型的人工智能系統(tǒng)通過學(xué)習(xí)大量數(shù)據(jù)訓(xùn)練經(jīng)驗(yàn)?zāi)P偷姆椒?,其?shí)可以被看成是模擬了人類學(xué)習(xí)和成長(zhǎng)的全過程。
如果說人工智能未來可以突破到強(qiáng)人工智能甚至超人工智能的層次,那從邏輯上說,在所有人工智能技術(shù)中,機(jī)器學(xué)習(xí)最有可能扮演核心推動(dòng)者的角色。
當(dāng)然,機(jī)器目前的主流學(xué)習(xí)方法和人類的學(xué)習(xí)還存在很大的差別。舉個(gè)最簡(jiǎn)單的例子:目前的計(jì)算機(jī)視覺系統(tǒng)在看過數(shù)百萬張或更多自行車的照片后,很容易辨別出什么是自行車,什么不是自行車,這種需要大量訓(xùn)練照片的學(xué)習(xí)方式看上去還比較笨拙。反觀人類,給一個(gè)三四歲的小孩子看一輛自行車之后,再見到哪怕外觀完全不同的自行車,小孩子也十有八九能做出那是一輛自行車的判斷。也就是說,人類的學(xué)習(xí)過程往往不需要大規(guī)模的訓(xùn)練數(shù)據(jù)。
最近,盡管研究者提出了遷移學(xué)習(xí)等新的解決方案,但從總體上說,計(jì)算機(jī)的學(xué)習(xí)水平還遠(yuǎn)遠(yuǎn)達(dá)不到人類的境界。
如果人工智能是一種會(huì)學(xué)習(xí)的機(jī)器,那未來需要著重提高的,就是讓機(jī)器在學(xué)習(xí)時(shí)的抽象或歸納能力向人類看齊。
定義五:Al就是根據(jù)對(duì)環(huán)境的感知,做出合理的行動(dòng),并獲得最大收益的計(jì)算機(jī)程序
維基百科的人工智能詞條采用的是斯圖亞特?羅素(Stuart Russell)與彼得?諾維格(Peter Norvig)在《人工智能:一種現(xiàn)代的方法》一書中的定義,他們認(rèn)為:
人工智能是有關(guān)“智能主體(Intelligent agent)的研究與設(shè)計(jì)”的學(xué)問,而“智能主體是指一個(gè)可以觀察周遭環(huán)境并做出行動(dòng)以達(dá)致目標(biāo)的系統(tǒng)”。
基本上,這個(gè)定義將前面幾個(gè)實(shí)用主義的定義都涵蓋了進(jìn)去,既強(qiáng)調(diào)人工智能可以根據(jù)環(huán)境感知做出主動(dòng)反應(yīng),又強(qiáng)調(diào)人工智能所做出的反應(yīng)必須達(dá)致目標(biāo),同時(shí),不再?gòu)?qiáng)調(diào)人工智能對(duì)人類思維方式或人類總結(jié)的思維法則的模仿。
以上,我們列舉了五種常見的人工智能的定義。其中,第二種定義(與人類思考方式相似)特別不可取。人們對(duì)大腦工作機(jī)理的認(rèn)識(shí)尚淺,而計(jì)算機(jī)走的是幾乎完全不同的技術(shù)道路。
第一種定義(讓人覺得不可思議)揭示的是大眾看待人工智能的視角直觀易懂,但主觀性太強(qiáng),不利于科學(xué)討論。
第三種定義(與人類行為相似)是計(jì)算機(jī)科學(xué)界的主流觀點(diǎn),也是一種從實(shí)用主義出發(fā),簡(jiǎn)潔、明了的定義,但缺乏周密的邏輯。
第四種定義(會(huì)學(xué)習(xí))反映的是機(jī)器學(xué)習(xí)特別是深度學(xué)習(xí)流行后,人工智能世界的技術(shù)趨勢(shì),雖失之狹隘,但最有時(shí)代精神。第五種定義(維基百科使用的綜合定義)是學(xué)術(shù)界的教科書式定義,全面均衡,偏重實(shí)證。